Hyperbola
It is the locus of a point which moves such that its distance from a fixed point is of a constant ratio (>1) to its distance from the fixed point.

The fixed point is called focus, the fixed line is called directrix and the ratio is called eccentricity. where $e>1$

Equation of Hyp perbola

let S be the focus and $Z M$ the directrix. From S draw $S Z \perp Z M$ and divide internally at $A \&$ externally at A_{1} in the ratio e: 1

$$
\Rightarrow \quad \frac{A S}{A Z}=\frac{A_{1} S}{A_{1} Z}=\frac{C}{1}
$$

Now, since A and A_{1} are points on the hyperbola. Let $A A_{1}=2 a$. and ' C ' is the middle of $A A_{1}$

$$
\begin{aligned}
& \quad A S=e A Z \Rightarrow A_{1} S=e A_{1} Z \\
& \Rightarrow \\
& \Rightarrow(C S+C A 1)+(A, C+C S)=e\left(C A-C Z+A_{1} C+C Z\right) \\
& \Rightarrow \\
& \Rightarrow \\
& 2 C S=e A_{1} A \Rightarrow 2 C S=2 a e
\end{aligned}
$$

Also $A_{1} S-A S=e\left(A_{1} Z-A Z\right)$

$$
\begin{aligned}
& \Rightarrow A_{1} A=e\left(A_{1} C+C z-A C-C z\right) \\
& \Rightarrow A_{1} A=e(2 C z) \\
& \Rightarrow 2 a=\not 2 e C z \\
& \Rightarrow C z=a / e
\end{aligned}
$$

Now take ' C ' as the origin \& CAX as the axis and a dine CY \perp LAS. y-axis
\therefore the co-ordinates of s are $(a e, 0)$ \& equation of directrix is $x=a / e$

Let $P(x, y)$ be any point en hyperbola.
Draw $P M \perp \mathbb{M}$. By Defination.

- We know that $S P=e P M$

$$
\begin{aligned}
& \Rightarrow S p^{2}=e^{2} P M^{2}=e^{2}(x-c z)^{2} \\
& \Rightarrow(x-a e)^{2}+y^{2}=e^{2}(x-a / e)^{2} \\
& \Rightarrow x^{2}+y^{2}+a^{2} e^{2}-2 x a e=e^{2}\left(x^{2}+\frac{a^{2}}{e^{2}}-2 x a\right. \\
& \Rightarrow x^{2}\left(1-e^{2}\right) \\
& \Rightarrow x^{2}+y^{2}+a^{2} e^{2}-2 x a e=e^{2} x^{2}+a^{2}-2 x a e \\
& \Rightarrow x^{2}\left(1-e^{2}\right)+y^{2}=a^{2}-a^{2} e^{2} \\
& \Rightarrow x^{2}\left(1-e^{2}\right)+y^{2}=a^{2}\left(1-e^{2}\right) \\
& \Rightarrow x^{2}\left(e^{2}-1\right)-y^{2}=a^{2}\left(e^{2}-1\right) \\
& \Rightarrow \frac{x^{2}}{a^{2}}-\frac{y^{2}}{a^{2}\left(e^{2}-1\right)}=1
\end{aligned}
$$

Put $a^{2}\left(e^{2}-1\right)=b^{2}$

$$
\Rightarrow \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
$$

is the required Eq.

Note -1) The line $A A_{1}$ is called tranverse axis.
2) If $B \& B_{1}$ be points on or such that $O B=O B_{1}=b$, then $B B_{1}$ is called.

- conjugate axis.

3) the chord passing through the focus paralled to directrix is called tatus rectum and length of latus rectum is $2 b^{2} / a^{2}$ or $2 a^{2}\left(e^{2}-1\right) / a^{2}$ or $2\left(e^{2}-1\right)$

5.5. FOCAL DISTANCES OF A POINT ON THE HYPERBOLA

Let $P(x, y)$ be any point on the hyperbola

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
$$

[Fig. Art. 5.2]
and S, S_{1} be its foci.
If $P M M$, be \perp to the directrices, we have

$$
\begin{aligned}
& S P=e P M=e(x-C Z)=e(x-a / e)=e x-a \\
& S_{1} P=e P M_{1}=e\left(x+C Z_{1}\right)=e(x+a / e)=e x+a
\end{aligned}
$$

Therefore

$$
S_{1} P-S P=2 a .
$$

Hence the difference of the focal distances of any point on the hyperbola is constant and is equal to the transverse axis.
From the above it follows that the byperbola is the locus of a point which moves such that the difference of distances from two fixed points is constant

5.6. PARAMETRIC EQUATION TO THE HYPERBOLA

plainly the point $x=a \sec \theta$ and $y=b \tan \theta$ always satisfies the equation of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ and is therefore a point on the hyperbola whatever value θ may have.
Hence for all values of $\boldsymbol{\theta}$, the equations

$$
x=a \sec \theta, y=b \tan \theta
$$

represent points on the hyperbola.
The co-ordinates of any point on the hyperbola can also be expressed as

$$
x=a \cos b t \text { and } y=b \sin b t
$$

5.7. PARTICULAR CASES

The equation of the hyperbola in standard form is

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
$$

Replacing b by a, the above equation reduces to

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{a^{2}}=1 \text { which } \Rightarrow x^{2}-y^{2}=a^{2}
$$

This equation defines the equation of a rectangular hyperbola. Thus the equation of a rectangular byperbola is $\boldsymbol{x}^{2}-\boldsymbol{y}^{2}=\boldsymbol{a}^{\mathbf{2}}$.

